metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Kathleen Reynolds,^a Roger D. Willett^a* and Brendan Twamley^b

^aDepartment of Chemistry, Washington State University, Pullman, WA 99164, USA, and ^bUniversity Research Office, University of Idaho, Moscow, ID 83844, USA

Correspondence e-mail: rdw@mail.wsu.edu

Key indicators

Single-crystal X-ray study T = 82 KMean σ (C–C) = 0.008 Å R factor = 0.018 wR factor = 0.042 Data-to-parameter ratio = 16.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

$(\beta$ -Alanine)dibromolead(II)

The structure of the title compound, $[PbBr_2(C_3H_7NO_2)]$, contains Pb^{2+} ions, Br^- ions and β -alanine molecules in their zwitterion form. Each lead(II) ion has a seven-coordinate geometry, with four sites occupied by Br^- ions, two by a bidentate carboxylate group and the last by a single O atom. The singly-bridging Br^- ions link the Pb^{II} ions into layers that are further aggregated into a three dimensional array by the formation of Pb-O bonds and hydrogen bonds involving the $-NH_3^+$ groups.

Comment

The sevenfold local coordination for the lead(II) ion is shown in Fig. 1, and can conveniently be viewed as a severely distorted octahedron in which one site of the octahedron is occupied by the bidentate carboxylate group. The four Pb-Br bond lengths range from 2.9918 (6) to 3.1731 (5) Å. The carboxylate group in the zwitterion form of the β -alanine molecule coordinates in one octahedral site in a bidentate fashion, while the sixth site is occupied by an O atom from a β alanine molecule of an adjacent octahedron. The Pb-O distances are 2.533 (3) and 2.600 (4) Å for the O atoms in the bidentate group, and 2.754 (4) Å for the bridging O atom. As anticipated, the angular distortions imposed by the presence of the bidentate group are significant. As is also seen in Fig. 1, the backbone of the β -alanine molecule assumes a gauche conformation. As discussed below, this allows the formation of an intramolecular hydrogen bond as well as several other interactions.

Corner-sharing, through the bromide ions on adjacent octahedra, leads to the formation of a two-dimensional structure, as shown in Fig. 2. This layer structure may be viewed as a (110) section of the parent cubic AMX_3 structure. This is a single metal halide layer of the type in the multiple layer (NH₂CINH₂)₂(CH₃NH₃)_{*n*-1}Sn_{*n*}I_{3*n*+1} (110) sections reported by Mitzi *et al.* (1995). This is in contrast to the typical (001) section formed by (*R*NH₃)₂*MX*₄ layer perovskite compounds, such as in (β -alaninium)₂CuX₄ salts ($X = Cl^-$ and Br⁻) (Willett *et al.*, 1981, 1983).

 \odot 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Received 6 May 2003 Accepted 27 May 2003 Online 10 June 2003

Illustration of the lead(II) ion coordination. Displacement ellipsoids are drawn at the 70% probability level. Suffix letters denote symmetrygenerated atoms: $A x, \frac{1}{2} - y, z - \frac{1}{2}; B - x, 1 - y, -z; C 1 + x, y, z.$

Illustration of the (110) PbBr₂ layer.

These metal halide layers are linked together via double Pb-O-Pb bridges (dashed lines, Fig. 3), as well as $N-H \cdots O$ and $N-H \cdots Br$ hydrogen bonds (dashed lines, inset, Fig. 3). These Pb-O bonds are 0.15 Å longer than those in the bidentate linkage. The bridging Pb-O-Pb angle is $109.0 (1)^{\circ}$. The $-NH_3^+$ group forms one asymmetric bifurcated hydrogen bond (to two different Br2 atoms, see Table 1) and two normal hydrogen bonds (to Br1 and O1). The intramolecular N-H···Br hydrogen bond is nearly 0.2 Å longer than the one between layers, presumably because of steric constraints on the conformation of the β -alanine molecule. In addition, there is an electrostatic interaction of the $-NH_3^+$ group with an O2 atom from the adjacent layer, in which the $C-N \cdots O$ angle is close to linear.

Illustration of the interconnection of the PbBr₂ layers, viewed down the a direction. The b axis is horizontal. The bridging Pb-O bonds are shown as dashed lines. The inset shows the hydrogen-bonding contacts.

Experimental

Crystals of the title compound were prepared by slow evaporation of a solution obtained by dissolving 0.9282 g PbBr₂ (0.002 mmol) and 0.4550 g β -alanine (0.005 mmol) in 80 ml deionized water that had been acidified with 5 drops of concentrated HBr.

> $D_x = 3.737 \text{ Mg m}^{-3}$ Mo Ka radiation Cell parameters from 2506

reflections $\theta = 2.5 - 28.3^{\circ}$

 $\mu = 30.60 \text{ mm}^{-1}$ T = 82 (2) KRhomboid, colorless $0.11 \times 0.08 \times 0.06 \; \mathrm{mm}$

 $R_{\rm int} = 0.034$

 $\theta_{\rm max} = 25.0^{\circ}$ $h = -7 \rightarrow 7$ $k = -19 \rightarrow 19$

 $l = -9 \rightarrow 9$

1423 independent reflections

1366 reflections with $I > 2\sigma(I)$

Crystal data

$[PbBr_2(C_3H_7NO_2)]$
$M_r = 456.11$
Monoclinic, $P2_1/c$
a = 6.0073 (4) Å
b = 16.5286 (10) Å
c = 8.3057 (5) Å
$\beta = 100.56 \ (1)^{\circ}$
$V = 810.71 (9) \text{ Å}^3$
Z = 4

Data collection

Bruker-Siemens SMART APEX diffractometer w scans Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{\min} = 0.066, \ T_{\max} = 0.159$ 7447 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + 2.9938P]$
$R[F^2 > 2\sigma(F^2)] = 0.018$	where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.042$	$(\Delta/\sigma)_{\rm max} = 0.001$
S = 1.20	$\Delta \rho_{\rm max} = 1.11 \ {\rm e} \ {\rm \AA}^{-3}$
1423 reflections	$\Delta \rho_{\rm min} = -0.68 \text{ e } \text{\AA}^{-3}$
84 parameters	Extinction correction: SHELXL97
H-atom parameters constrained	Extinction coefficient: 0.00191 (12)

Table 1

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1A\cdotsO1^{i}$	0.91	1.93	2.843 (6)	177
$N1-H1B\cdots Br1^{ii}$	0.91	2.55	3.422 (5)	162
$N1-H1C\cdots Br2^{iii}$	0.91	2.75	3.604 (5)	156
$N1 - H1C \cdots Br2^{iv}$	0.91	2.98	3.490 (4)	118

Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) $1 - x, \frac{1}{2} + y, \frac{1}{2} - z$; (iii) 1 + x, y, z; (iv) -x, 1-y, -z

H atoms were positioned geometrically and refined using a riding model, with $U_{\rm iso}$ for the methylene C—H groups constrained to be $1.2U_{\rm eq}$ of the carrier atom, while those of the N—H H atoms were set at $1.5U_{\rm eq}$. There is a large residual of $1.11 \,\mathrm{e}$ Å⁻³ ca 0.92 Å from Pb1.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXTL* (Bruker, 2000); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

References

- Bruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2001). *SADABS* (Version 2.03) and *SAINT-Plus* (Version 6.22). Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2002). *SMART*. Version 5.626. Bruker AXS Inc., Madison, Wisconsin, USA.
- Mitzi, D. B., Wang, S., Feild, C. A., Chess, C. A. & Guloy, A. M. (1995). Science, 267, 1473–1476.
- Willett, R. D., Jardine, F. H., Rouse, I., Wong, R. J., Landee, C. P. & Numata, M. (1981). Phys. Rev. 24, 5372–5381.
- Willett, R. D., Wong, R. & Numata, M. (1983). Inorg. Chem. 22, 3189.